edexcel

Mark Scheme (Results)

January 2012

International GCSE Chemistry (4CH0) Paper 2C

Edexcel and BTEC Qualifications
Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844576 0025, our GCSE team on 08445760027 , or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can speak directly to a subject specialist at Pearson about Edexcel qualifications on our dedicated Science telephone line: 08445760037

Pearson: helping people progress, everyw here
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2012
Publications Code UG030257
All the material in this publication is copyright
© Pearson Education Ltd 2012

INTERNATIONAL GCSE CHEMISTRY 4CHO 2C - JANUARY 2012

Question number	Expected Answer				Accept	Reject	Marks
1 (a)							
		Proton	Neutron	Electron			4
	relative mass	1	1		+1	- 1 / one	
	relative charge		0	-1		Zero minus one /negative	
	1 mark for each correct answer						
(b) (i)	Protons AND electrons $=1$ neutrons = 2				one two		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	with different masses Ignore references to electrons				atoms with same atomic number / number of protons / proton number	molecules / compounds for first mark only	1 1
					with different mass numbers / different numbers of neutrons / different neutron numbers	different relative atomic masses for second mark only	

Question number	Expected Answer	Accept	Reject	Marks
1 (c)	$((79 \times 50.7)+(81 \times 49.3)) / 100$ OR $(79 \times 0.50 .7)+(81 \times 0.493)$ $=79.99$ Allow 1 mark for a single transcription error (e.g. 43.9 instead of 49.3) Ignore units such as grams	Correct answer on its own scores 2		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
			Total	10

Question number	Answer	Accept	Reject	Marks
2 (a)	(i)	B		
	(ii)	A		
	(iii)	E		
	(iv)	C		
(b)	(i)	Atomic number		
	(ii)	Electrons in the outer shell		
			1	

Question number	Expected Answer	Accept	Reject	Marks
3 (b)	Any two from bubbles (of gas) / fizzing / effervescence Ignore carbon dioxide solid / lead(II) carbonate disappears solution formed / colourless liquid Ignore incorrect starting colours Ignore heat produced and temperature change	gas given off dissolves / less solid	any specific colour	2
			Total	8

Question number	Answer	Accept	Reject	Marks
$4 \text { (a) (i) }$ (ii)	to allow air / oxygen to enter (the crucible) / to come into contact with the magnesium / solid Ignore references to visual checks of reaction completion to make sure that all of the magnesium has reacted	to allow the magnesium to burn / react to make sure that the (all) magnesium has reacted to complete the reaction		1
(b)	mass of crucible (and lid) +MgO - mass of crucible (and lid) lids must be in both or neither ignore any references to the table of results on page 8	mass of crucible (and lid) at end - mass of crucible (and lid)		1
(c) (i) (ii) (iii)	all points plotted correctly to nearest gridline (subtract 1 mark for each error) correct straight line of best fit (need not pass through origin) (must be drawn with the aid of a rule) anomalous point at $(0.26,0.64)$ circled csq on candidate's graph Units not needed, ignore incorrect units	line as evidence of correct plotting when points cannot be seen		$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
			Total	8

Question number	Answer	Accept	Reject	Marks
5 (a)(i)	(damp / moist) litmus paper	decolourised / loses its colour		1
	bleaches / turns white			1
	OR			
	(damp / moist) starch-iodide paper			
	turns blue / black (allow observation mark only for starch-iodine paper)			
	OR			
	(bubble through) (potassium) iodide solution	orange / orange-brown / redbrown		
	(ignore the starting colour)			1
(ii)		$\mathrm{H}_{2} / \mathrm{H}^{2} / \mathrm{H} 2 / \mathrm{h}_{2} / \mathrm{h}^{2} / \mathrm{h} 2$	$\mathrm{H} / 2 \mathrm{H} / \mathrm{h} / 2 \mathrm{~h}$	
(b)	(solution is) alkali(ne) / hydroxide ions (present) / OH ${ }^{-}$	sodium hydroxide / NaOH (is present)	any other named ion or substance	1
	ignore references to sodium ions			

Question number	Answer	Accept	Reject	Marks
5 (c) (i)	$(10 / 2)=5$			1
(ii)	(5×24)			1
	$=120 \mathrm{dm}^{3}$ (units required)	$12000 \mathrm{~cm}^{3}$		1
	mark part (ii) consequentially on part (i) award second mark only for use of 22.4 Final answer must be to 2 or more sig fig			
			Total	7

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Answer \& Accept \& Reject \& Marks \\
\hline 6 (a) \& \begin{tabular}{l}
\(\mathrm{Cu}(\mathrm{OH})_{2}\) \\
penalise incorrect use of cases and subscript ignore names
\end{tabular} \& Formula showing correct charges on the ions \& \& 1 \\
\hline (b) \& to remove carbonate (ions) / to avoid precipitating any other (named) insoluble (barium) compounds / to remove ions that would form (white) precipitates \& to remove compounds that would form (white) precipitates \& \& 1 \\
\hline (c) \& \(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O} / \mathrm{CuSO}_{4} 5 \mathrm{H}_{2} \mathrm{O}\) (i.e. no dot) \& formula showing correct charges on the ions \& \& 1 \\
\hline (d) \& (use a clean) wire / glass rod / silica rod ignore references to hydrochloric acid (to put) solid in non-luminous / Bunsen flame No marks if solid is in container eg test tube / tray / crucible \& \begin{tabular}{l}
any method of introducing the solid / solution into the flame. e.g. (wet) wooden spill / tip or sprinkle in \\
Bunsen/nonluminous anywhere in answer Burner in place of flame Blue for nonluminous
\end{tabular} \& copper rod / any metal that will burn or melt in a flame (eg magnesium, aluminium) \& 1

1

\hline \& \& \& Total \& 5

\hline
\end{tabular}

Question number	Answer	Accept	Reject	Marks
7 (a)	it /gasoline is used (as a fuel) for cars ignore references to uses of fuel oil and gasoline burning better	there are more cars than ships	Any other wrong use, eg domestic heating, aeroplanes, ships, etc	1
(b) (i)	$\mathrm{C}_{4} \mathrm{H}_{8}$			
(ii)	Catalyst - silica / silicon dioxide / silicon(IV) oxide / alumina / aluminium oxide Temperature - $600-700\left({ }^{\circ} \mathrm{C}\right)$	$2 \mathrm{C}_{2} \mathrm{H}_{4}$ zeolite(s)/ aluminosilicates If more than catalyst given, all must be correct	Any temperature or any range within 600- $700\left({ }^{\circ} \mathrm{C}\right)$ Equivalent temperatures in Kelvin	1

Question number	Answer	Accept	Reject	Marks
7 (c) (i) (ii)	Cracking - any two from: - continuous process - pure(r) product - fast(er) process - takes place on large(r) scale - high(er) percentage yield - 100% atom economy ignore references to cost Fermentation - any two from: - sugar is a renewable resource / uses a renewable resource - country has suitable climate/ enough land to grow sugar cane / plentiful supply of sugar (cane) - country has no / little crude oil - (ethanol produced) suitable for making alcoholic drinks / vinegar - takes place at lower temperature / uses less energy ignore references to cost		reusable resource	2
			Total	8

Question number	Answer	Accept	Reject	Marks
8 (a)	$(15.0 \div 1000) \times 0.0010$ $=1.5(0) \times 10^{-5}$	1.5×10^{-2} for 1 mark		1
(b)	answer to (a)		1	
(c)	answer to (b) $\times 1000$ 25.0 correct evaluation $(=0.0006(0))$	answer to (b) $\div 25$ for 1 mark	1	
(d)	M_{r} of $\mathrm{SO}_{2}=64$ answer to (c) $\times M_{r}$ of $\mathrm{SO}_{2}(=0.038(4))$ Final answer must be to 2 or more sig fig		1	
(e)	The wine is drinkable Ignore any explanations		1	
		consequential on (d)		1

PAPER TOTAL: 60 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code xxxxxxxx January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

